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Abstract
Human existence and societal growth are both dependent on the availability of clean 
and fresh water. Photocatalysis is a type of artificial photosynthesis that uses envi-
ronmentally friendly, long-lasting materials to address energy and environmental 
issues. There is currently a considerable demand for low-cost, high-performance 
wastewater treatment equipment. By changing the structure, size, and characteris-
tics of nanomaterials, the use of nanotechnology in the field of water filtration has 
evolved dramatically. Semiconductor-assisted photocatalysis has recently advanced 
to become among the most promising techniques in the fields of sustainable energy 
generation and ecological cleanup. It is environmentally beneficial, cost-effective, 
and strictly linked to the zero waste discharge principle used in industrial efflu-
ent treatment. Owing to the reduction or removal of created unwanted byproducts, 
the green synthesis of photoactive nanomaterial is more beneficial than chemical 
synthesis approaches. Furthermore, unlike chemical synthesis methods, the green 
synthesis method does not require the use of expensive, dangerous, or poisonous 
ingredients, making it a less costly, easy, and environmental method for photocata-
lyst synthesis. This work focuses on distinct greener synthesis techniques utilized for 
the production of new photocatalysts, including metals, metal doped-metal oxides, 
metal oxides, and plasmonic nanostructures, including the application of artificial 
intelligence and machine learning to the design and selection of an innovative pho-
tocatalyst in the context of energy and environmental challenges. A brief overview 
of the industrial and environmental applications of photocatalysts is also presented. 
Finally, an overview and recommendations for future research are given to create 
photocatalytic systems with greatly improved stability and efficiency.
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1  Introduction

Photocatalysts are nanoparticles (NPs) with semiconducting features such as light 
absorption, charge transfer, and favorable electronic structure, among others. Pho-
toactive NPs serve as catalysts in a variety of applications, including sustainable 
energy production and environmental remediation [1–15]. When compared with 
bulk materials, photocatalysts have exceptional structures and a higher surface 
area to volume ratio, which boosts their actions [16, 17]. As a result, controlling 
the shape and size of photocatalytic materials in the nanoscale range allows for 
the creation and fabrication of materials appropriate for use in innovative applica-
tions. Green photoactive NPs can be made from a variety of biological sources, 
including plant materials and microorganisms. This synthesis approach is envi-
ronmentally friendly, green, biocompatible, and cost-effective [18, 19]. Green 
synthesis nanophotocatalysts exhibit improved catalytic activity while reducing 
the usage of costly and dangerous chemicals [20, 21]. The use of diverse bacte-
rial species for the fabrication of noble metals such as Au, Ag, Pt, Pd, and other 
semiconductor oxides such as TiO2 and ZnO is also favorable for greener synthe-
sis of NPs. Algae, bacteria, and fungi have commonly been used in microbial-
mediated processes to produce very stable metal NPs. Plant extracts are becom-
ing increasingly popular owing to their ease of production and handling, as well 
as their low danger. Because light is plentiful, inexpensive, clean, sustainable, 
and readily available, photocatalytic pollution remediation is a potential solution. 
Furthermore, light can trigger highly selective reactions [22–25]. Photocatalysis 
can easily destroy persistent organic contaminants [26]. To enable light-induced 
reduction–oxidation (redox) processes that oxidize many organic contaminants by 
producing reactive oxygen species (ROS), new, high-performance, photoactive 
nanomaterials are required [24, 27–29]. For humans, sunlight is a crucial source 
of energy. A continual flow of electromagnetic radiation waves carries solar 
energy to the Earth’s surface (Fig. 1). Only a small fraction of the total energy 
emitted in the solar system is captured by the planet. Photosynthesis has been 

Fig. 1   The solar energy spectrum [31]
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the most common method of converting solar energy into usable energy, which 
is vital to human survival via agriculture and forestry. Solar radiation has a total 
power of 384.6 yottawatts. A significant quantity of energy is radiated continu-
ously by the Sun in all directions. Exposed parts of the Earth receive around 1368 
W m–2 at a distance of 150 million kilometers [30, 31]. Because the atmosphere 
reflects 30% of the irradiated solar energy, about 1000 W m−2 of solar energy is 
received everywhere on the Earth’s surface. Although the total amount of energy 
produced by the Sun is more than enough, the true difficulty is figuring out how 
to collect and use it efficiently.

The importance of the synthesis of materials from natural, renewable, and bio-
logical resources will be described below. Materials such as semiconductors, noble 
metals, and ceramics can be made from the above-mentioned natural resources, 
needing little energy and having fewer byproducts to remove [32]. Carbon-based 
nanostructures, for example, can be made from renewable resources including 
sugarcane bagasse, coconut coir, peanuts, bamboo wood, groundnut shells, and 
coal [33]. The calcination and filtering of the above-mentioned naturally available 
resources use less energy to manufacture carbon-based nanostructures. In contrast to 
the traditional approach for generating carbon nanostructures, advanced production 
techniques such as chemical vapor deposition, molecular beam epitaxy, and thermal 
exfoliation techniques are required. Ramrez-Rico et al. [34] and Singh et al. [35, 36] 
found that these processes require a lot of energy, use toxic chemicals, emit danger-
ous gases, and have a high production cost. More items can be made in an envi-
ronmentally acceptable manner without harming our society or the environment, 
according to the green technology vision. The use of energy and the production of 
harmful emissions are both reduced when using green chemistry. Nuclear, wind, 
and hydroelectric energy are currently available technologies for energy distribution 
around the world, all being produced in a more environmentally friendly manner 
than through the use of fossil fuels [37, 38]. Alternative energy production systems 
should be introduced in a greener way to balance the total requirement for energy 
from the world’s population. Materials are a fundamental boon to modern technol-
ogy, and their performance and variety of features define the reliability and efficacy 
of products. Furthermore, recent progress in the development of novel materials can 
be used directly in energy and environmental applications. Such advanced technol-
ogy can process new materials and establish a relationship between the protocol 
creator, material producer, designer, and developer. This is a thorough method of 
identifying a long-term substance for environmental activities. There will be a great 
global need for sophisticated materials in the energy and environmental industries 
in a few years. This is the only solution to avoid excessive carbon emissions and 
high energy consumption in energy production materials [39–41]. The current goal 
is to develop sustainable materials for energy and environmental-related industries; 
moreover, awareness of the use of sustainable materials should be promoted through 
education or government initiatives for the next generation. We discuss herein sev-
eral greener methodologies for the fabrication of new photocatalysts. The applica-
tions of metal oxides, metal-doped metal oxides, metals, and plasmonic nanocata-
lysts with higher activity than bulk materials are discussed in this review. Finally, 
future research trends regarding photocatalytic processes are provided in detail.
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2 � Photosynthesis and Photocatalysts as Sustainable Energy 
Solutions

Hashimoto et  al. mentioned that, in the 1970s, Fujishima and Honda introduced 
photocatalysis, which became known as the Honda–Fujishima effect [42–44]. Water 
splitting (Fig.  2) is a common type of photocatalysis, in which sunlight interacts 
with NP catalysts (such as TiO2 NPs) to split H2O molecules into O and H atoms, 
resulting in H2 gas as an ecofriendly energy resource. Owing to its transparency to 
visible light, the efficiency of the water splitting process depends on nanocatalysts to 
collect light and transform it into chemical energy for water molecules.

The water splitting reaction can be described simply as

Water splitting requires light with an energy of 1.23 eV, which corresponds to 
a wavelength of about 1 mm [45]. In theory, every photon in the visible spectrum 
could cause water splitting. However, water cannot absorb sunlight directly because 
it is transparent to the entire spectrum.

A catalyst is required to transfer photon energy to water molecules by first absorb-
ing the sunlight and then transferring the energy to the H2O. Photosynthesis is the 
conversion of solar energy into chemical energy that can be stored in specific cat-
egories of chemical compounds. Plants break down carbon dioxide (CO2) and water 
(H2O) via photosynthesis to generate carbohydrates (C6H12O6) and oxygen (O2) 
[47–50] according to the equation

2.1 � Mechanism of Photocatalytic Reactions

The activation of a photocatalyst, i.e., semiconducting material, in photocatalysis is 
dependent on the wavelength of the radiation and the photocatalyst’s “bandgap,” that is, 

(1)H2O + lightenergy → 0.5O2 + H2

(2)6CO2 + 12H2O + light energy → C6H12O6 + 6O2 + 6H2O

Fig. 2   The numerous processes in a heterogeneous photocatalytic reaction, modified after Ref. [46]
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the energy difference between the valence band (VB) and the conduction band (CB) of 
the photocatalyst [51–55]. When a photocatalyst such as CdS, ZnO, WO3, ZnS, ZrO2, 
or TiO2 absorbs energy from an artificial light source or sunlight, the production of an 
e–h pair can occur only if the photon energy (hυ) is equal to or greater than the photo-
catalyst’s bandgap energy (Eg) [55–58]. An electron in the conduction band of the sem-
iconductor (e−CB) can be used to reduce any substrate, while a hole in the valence band 
(h+VB) can be used to oxidize a variety of substances. The photocatalytic reaction can 
take place in two ways: homogeneously or heterogeneously [59–63], but heterogeneous 
photocatalysis has been extensively discussed in recent years owing to its widespread 
application in fields such as environmental remediation, energy-related applications, 
and organic syntheses [59, 63].

The following are the steps in the total photocatalysis reaction process [64], which 
are depicted in Fig. 3 [65, 66]:

After the incidence of a photon with energy (hυ) higher than or equal to the semi-
conductor’s bandgap energy (Eg), the photocatalytic process (step 4) commences [68]. 
The following are the reactions that proceed during the oxidation of organic com-
pounds using photocatalysts under ultraviolet (UV) irradiation [69–71]:

(3)Semiconductor photocatalyst + hv → semiconductor photocatalyst

(4)
Semiconductor photocatalyst + H2O → semiconductor photocatalyst + H+ + OH

(5)
Semiconductor photocatalyst + HO−

→ semiconductor photocatalyst + OH

(6)
Semiconductor photocatalyst + O2 → semiconductor photocatalyst + O.−

2

(7)O.−
2
+ H2 → HO2

(8)HO.
2
+ HO.

2
→ H2O2 + O2

Fig. 3   Steps involved in heterogeneous catalysis, modified after Ref. [67]
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When the photon energy received from the Sun or other types of artificial light 
sources (fluorescent lamps, light-emitting diodes (LEDs), etc.) is equal to or greater 
than the semiconductor photocatalyst’s bandgap energy (h > Eg), an electron in the 
semiconductor photocatalyst’s occupied VB can be shifted to the unoccupied CB, 
resulting in an excited-state conduction-band electron (e−CB) and a positive valence-
band hole (h+VB) [67]. Redox processes (Eqs.  3–14) involving numerous organic 
compounds adsorbed on the photocatalyst surface can easily involve electron and 
hole migration to the photocatalyst surface. The formation of high-energy OH 
occurs when positively charged holes (h+VB) react with surface-bound water or .OH. 
While free radicals (Eqs. 3–4) react with oxygen to form superoxide anions, e−CB 
reacts with oxygen to produce superoxide anions (Eq. 6). Hydroxyl radicals can also 
be produced by following the reaction pathway described in Eqs. 7–11. This cycle 
repeats until light energy becomes available. Hydroxyl radicals (.OH) are the pri-
mary oxidizing species in photocatalytic oxidation processes [72]. In heterogeneous 
photocatalysis, the oxidation paths are more important than the reduction pathways 
[69]. The heterogeneous photocatalytic process is depicted in full in Fig. 4.

The recombination of the photoexcited e–h pair can release energy in the form of 
heat. As a result, e–h pair recombination is detrimental and decreases the efficacy 
of the operation [70]. Furthermore, the main goal of photocatalysis is to achieve 

(9)
Semiconductor photocatalyst + H2O2 → semiconductor photocatalyst + OH. + OH−

(10)H2O2 + O.−
2
→ OH. + OH− + O2

(11)H2O2 + h� → 2OH.

(12)Organic compound + OH.
→ degradation products

(13)
Organic compound + semiconductor photocatalyst → oxidation products

(14)
Organic compound + semiconductor photocatalyst → reduction products

Fig. 4   Heterogeneous photocatalysis concept for degrading organic compounds in water
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a high-efficiency photocatalytic interaction between the excited e−CB and the oxi-
dant to produce the reduced product. Furthermore, to form an oxidized component, 
a reaction between a positive h+VB and a reductant is required. After the photoca-
talysis reaction, CO2, water, and other degradation products (such as SO4 and NO3) 
are formed.

2.2 � Nanostructured Photocatalysts

Numerous semiconductors have been used as photocatalysts, including metal oxides 
(ZrO2, ZnO, V2O5, TiO2, Fe2O3, WO3, and CeO2) and sulfides (CdS and ZnS). TiO2, 
a semiconductor photocatalyst, has gained popularity as a result of its capacity to 
degrade organic contaminants found in waste streams [73–75]. In aqueous condi-
tions, this photocatalyst shows improved conformity between photocatalytic per-
formance and stability [76]. Scientists have recently been working on developing 
innovative heterogeneous photocatalysts with comparatively high photocatalytic 
performance for the breakdown of contaminants in the presence of sunlight or UV 
irradiation [28, 29, 77–80]. It is worth mentioning that the synthesis of photocata-
lysts is critical from both an economic and practical standpoint [64].

Nanostructured photocatalysts are extremely small semiconductor particles that 
are only a few nanometers in size. During the last decade, the photochemistry of 
nanostructured photocatalysts has become a significant domain of study in physical 
chemistry [81]. The improved photocatalytic and photophysical capabilities of these 
nanostructured photocatalysts in comparison with bulk materials piqued researchers’ 
curiosity [82, 83]. The enhanced specific surface area and quantum size (Q-size) 
are primarily responsible for the aforesaid properties. The quantum size effects 
are caused by limited electron movement when the particle size of photocatalysts 
is less than a critical size limit (for example, when the particle size is reduced to 
the nanometer scale). Owing to the direct effect of quantum size, the semiconduc-
tor photocatalyst’s CB and VB can become discretized into energy levels. This dis-
cretization process is determined by the size of the material structure. The redox 
potential of the VB or the CB changes more positively or negatively as a result of 
discretization. The redox potential of the produced electrons and holes is increased 
in this way. As a result, nanostructured photocatalysts become more reactive to oxi-
dation [15, 70, 84].

Another important consideration for catalysts is the particular surface area. The 
availability of additional atoms on the particular surface of the semiconductors 
improves the adsorption ability of nanostructured photocatalysts. The time it takes 
for e–h pairs to undergo interaction with the surface of semiconductor particles 
determines the photocatalytic efficiency of any photocatalyst. If the particle is in the 
nanoscale range, the diameter becomes insignificant, and the transfer of e–h pairs 
from the interior to the surface turns out to be very easy, increasing the rate of the 
redox reaction. Because the transport of e–h pairs to the surface from the interior of 
the catalyst is enhanced, the likelihood of e–h pair combination decreases for nano-
photocatalysts. As a result, enhanced photocatalytic reactions can be accomplished, 
so nanostructured photocatalysts exhibit higher photocatalytic activities than bulk 
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photocatalysts [85, 86]. A semiconductor catalyst’s photocatalytic performance is 
greatly dependent on its porosity distribution. The most effective catalysts have an 
ideal porosity distribution in the range of micro- (pore sizes < 2 nm) or mesoporous 
(pore sizes 2–50 nm) range. Auyeung’s group published a paper on a method for 
regulating the structure and porosity of catalytic NPs [87]. The existence of enor-
mous mesopores and macrosized pores increases the operative transfer of reactants 
for modifying the diffusional constraints during photocatalytic activities in the case 
of enforced nanotexture heterogeneous catalysts (such as mesoporous sieves, zeo-
lites, etc.). As a result, both the porosity distribution and pore size play a significant 
role in the real-world application of well-designed nanosized porous photocatalysts 
[88].

3 � Different Approaches for Synthesis of NPs

The “top-down” technique and the “bottom-up” approach (Fig. 5) are the two basic 
approaches for NP synthesis. NPs are manufactured via size reduction, dissolving 
from bulk material into small particles, in the top-down manner [89]. Physical and 
chemical processes such as lithography, mechanical (e.g., milling, grinding), sput-
tering, chemical etching, thermal evaporation, pulsed laser ablation, and photore-
duction can be used to accomplish this procedure [90–94]. The top-down tech-
nique, on the other hand, has a key flaw: the surface structure is incomplete [95]. 
Wet chemical methods (e.g., chemical reduction/oxidation of metal ions) and oth-
ers, such as sol–gel chemistry, chemical vapor deposition (CVD), coprecipitation, 

Fig. 5   Various approaches to NP synthesis
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microemulsion, pyrolysis, hydrothermal, solvothermal, radiation-induced, and elec-
trodeposition methods, are used in the bottom-up approach [96–105]. Bottom-up 
synthesis, also known as the self-assembly technique, involves assembling NPs from 
smaller units such as atoms, molecules, and smaller particles [106, 107]. They are, 
however, disadvantageous because of the use of potentially dangerous and poisonous 
ingredients, high investment costs, environmental toxicity, high energy demands, 
long response times, and non-ecofriendly byproducts [108–110].

As numerous terminologies and concepts converged and diverged to build a 
web of green chemistry, the philosophy of green synthesis took its natural course. 
Figure 6 depicts the web or connectivity between various green synthesis subdis-
ciplines. The “nano” universe is too big to be categorized into a single mode. As a 
result, the classification of NPs is governed by several factors, including their size, 
shape, content, homogeneity, and aggregation [5]. Figure 7 depicts a variety of tradi-
tional methods for the classification of NPs.

4 � What Is Green Synthesis?

With the publication of Rachel Carson’s Silent Spring in 1962, the environmen-
tal agenda gained traction, resulting in the establishment of the US Environmental 
Protection Agency (EPA) and the birth of green chemistry. Over time, this strategy 
became increasingly popular among scientists. The philosophy of green synthesis 
is to synthesize chemicals and molecules in an environmentally acceptable manner. 
NPs are no exception when it comes to using this method of synthesis.

The following are the main goals of green NPs synthesis:
• Using solvents/reagents that are safe for synthesis

Green

Clean

EnvironmentalBenign

Sustainable

Fig. 6   Alternate nomenclatures for environmentally friendly techniques shown in the web of green chem-
istry
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• Using a low-energy conversion technique
• Using a biological process to make NPs (i.e., a biosynthetic route)
• Achieving environmentally friendly and safe NP synthesis for future 

applications

4.1 � How Is Synthesis Green?

As previously stated in the principles of NP synthesis via green chemistry, the main 
emphasis is on the environmentally friendly characteristics of the process and final 
product to avoid any form of hazard. Table 1 outlines a small number of attempts at 
manufacturing NPs that are environmentally friendly.

4.2 � What Are the Approaches for Green Synthesis of NPs?

NPs can be made using a variety of techniques. However, the process can be changed 
with good reason to fulfill the goal of green synthesis. Table 2 summarizes a few of 
the green synthesis pathways.

Dimensio
n

• One dimensional (1D)
•Two dimensional (2D) 
•Three dimensional (3D)

Chemical 
nature

•Inorganic (Gold NPs, ZnO NPs, Fe3O4 NPs)
•Organic (Liposome, Dendrimers) 

Synthesis 
Principle

•Top-Down (1 mm to 100nm
•Bo�om-Up (0.1nm to 1nm)

Synthesis
rout

•Chemical
•Green ( Plant, Algae, Bacteria, Yeast)

Component 

•Signle component ( , ZnO NPs, Fe3O4 NPs)
•Mul�ple components ( Nanocomposite, Core- shell NPs)

Shapes
•Spherical, star, Rod, Cluster, Triangular, Cube)

Fig. 7   The classification of NPs through various modes
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Table 2   Various green synthesis methods [5]

Type Description

Plant A common approach to green nanotechnology is to use phytochemicals, 
carbohydrates, and biomolecules from plant extracts (Fig. 8), as reducing 
or capping agents for NP formation. Among all common bioreductants, 
plant extracts are more beneficial than other biological resources (Fig. 9). 
Plant-based NP production is a simple procedure that includes mixing a 
metal salt with a plant extract and allowing the reaction to complete at 
room temperature in minutes to a few hours. Properly sized NPs are cre-
ated from a metallic salt solution [116]. Plant extracts can also be used to 
control particle size growth by modifying synthesis parameters such as the 
reducing agent concentration, pH, temperature, or ratio of the reactant mix

Microbes Because of their genetic diversity, widespread presence, ease of access, ease 
of cultivation and maintenance, ease of screening, and potential for chang-
ing the structural and functional properties of NPs, microbes have proven 
to be an ideal choice. The technique has grown more selective and suitable 
as microorganisms have a variety of biocatalysts

Solar energy Sunlight, the most plentiful renewable energy source on the planet, can also 
be utilized to mediate the synthesis of NPs, a nonbiological route to green 
synthesis in general. Sunlight is a great contender for green synthesis 
owing to its availability and environmentally benign nature

Microwave (MW) Alternative energy sources are paving the way for “green chemistry,” which 
can significantly reduce reaction temperatures and times while reducing 
energy consumption. MWs are a type of electromagnetic wave consist-
ing of pure energy radiated as a wave traveling at the speed of light. The 
propagation of microwaves in condensed matter is slower than in air or 
vacuum, where the speed of light is slower. The power and time required 
for production of NPs using microwaves must be regulated. Hydrothermal 
synthesis devices can also benefit from microwaves

Ultrasound (US) Ultrasound is a nonbiological way of producing green NPs that is safe and 
clean. The fabrication of controllable NPs is possible. US, which has 
frequencies as high as 20,000 Hz, is a powerful energy carrier that allows 
bulk precursors to be easily broken down into NPs of a precise shape for 
specific applications [117]

Mild reducing agents The concentration of reducing agents and stabilizing precursors has a 
significant impact on metal NP synthesis. This method of NP production 
is essentially a hydrothermal or solvothermal process. The reactant ions 
and/or molecules react in a compressed liquid environment, where the 
reactants’ dispersion is significantly superior. The presence of functional 
groups in the reducing or stabilizing agents has a significant impact on 
the NP morphology. When glucose and fructose are utilized as reduc-
ing agents, for example, changes in morphology and dispersity might be 
detected [118]. The reason for this is due to changes in the reaction pro-
cesses of the active functional groups, which result in metal ion reduction 
for NP production

Mild reaction conditions The synthesis process is made less dangerous and ecologically friendly by 
using mild reducing conditions such as ambient temperature, pH, solvent 
concentration, and mild surfactants as reducing agents and stabilizers. This 
also reduces the amount of energy required, making synthesis safer and 
easier
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4.3 � Green Synthesis of Different NPs and Their Applications

Figure  8 depicts several bioactive molecule compounds that have been applied 
in the bioreduction of metal NPs utilizing plant extracts, as well as the general 
bioreduction mechanisms enabled by diverse biomolecular compounds.

Alkaloids, flavonoids, saponins, steroids, terpenoids, tannins, proteins, vita-
mins, reducing sugars, nitrogenous bases, amino acids, and other natural phyto-
chemical substances all contribute to metal ion reduction in plants [5, 120]. These 
bioactive compounds are thought to induce bioreduction in the following way:

Fig. 8   The mechanism of NP fabrication by plant leaf extract, modified after Refs. [5, 119]

Fig. 9   Benefits of plant-extract-mediated NP synthesis
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The metal ions go through an activation phase during which they are reduced 
from their salt counterparts by the action of plant biomolecule metabolites with 
reduction capabilities, resulting in a slow development rate of particles. In the 
nucleation phase, new NPs are produced, and reduction processes take place as 
biometabolite-reducing agents, such as flavonoids or terpenoids, engage with 
metal ions via ionic bonding [121]. The presence of electrons as well as carbonyl 
groups in their molecular structure is thought to be responsible for the adsorption 
of biomolecule metabolite reductants on the surface of metal NPs. This is fol-
lowed by a growth phase, during which the separated metal ions unite to produce 
metal NPs while metal ions are progressively reduced. During this process, metal 
ions are transformed from monovalent to divalent oxidation states to zero-valent 
states.

NPs merge to produce a variety of morphologies as they expand, including 
spheres, triangles, hexagons, pentagons, rods, wires, and cubes [122]. The longer 
nucleation stage may result in aggregation of the resulting NPs, altering their 
morphologies, whereas the continuous growth stage leads to increased thermo-
dynamic stability of NPs. Plant metabolites crown the final step of the termina-
tion phase, in which the NPs achieve their most actively helpful and stable form 
[123, 124]. This mechanism, together with the synergistic adsorption of func-
tional groups from plant extract components, will create steric repulsion, limit-
ing NP aggregation. Figure 10 shows a more detailed depiction of this potential 
procedure.

Fig. 10   Proposed green synthesis mechanism of metal NP formation, modified after Ref. [5, 125]
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4.4 � Green Photocatalysis

Fujishima and Honda described the process of splitting water into hydrogen and 
oxygen with the use of metal oxide photocatalysts under UV light for the first time 
in 1972. This work has since been expanded beneficially, yielding major efficiency 
gains [126]. Owing to the significant potential in the realm of energy and environ-
mental challenges, this field has piqued the interest of academics since 1972. Metal 
oxide semiconductors have played an important role in photocatalysis for decades 
owing to their high reactivity, stability, chemical inertness, and low cost. TiO2, ZnO, 
MoO3, Fe3O4, and other metal oxide semiconductors are ideal materials for water 
remediation, hydrogen fuel production, removal of toxic waste from water bodies, 
and pharmaceutical waste removal applications [56, 127–129]. These materials have 
outstanding physicochemical, electronic, and structural properties that enhance their 
performance in the applications stated. The process of transforming solar or light 
energy into chemical energy is known as photocatalysis. The terms “photo” and 
“catalysis” both refer to the process of speeding up, breaking down, or degrading a 
chemical reaction. Overall, photocatalysis helps to degrade harmful contaminants in 
aqueous solution by breaking them down with the use of light energy and success-
fully activating chemical reactions [130].

Photocatalysts can be divided into various categories, with modern research 
focusing on three of them: semiconductor photocatalysts, plasmonic photocatalysts, 
and heterogeneous photocatalysts. The following sections go over the results of a 
detailed survey of each kind. In general, green photocatalysis is a synthetic approach 
that aids in the preparation of various photocatalysts using natural resources, bio-
masses, and biological extracts [131]. Those precursors (resource materials) are 
environmentally friendly, green sources, offering economically viable routes for 
converting light energy to chemical energy over semiconducting materials, such as 
removing pollutants from water bodies, reducing toxic molecules, and producing 
hydrogen fuel [131–133].

4.4.1 � Sunlight‑Driven Photocatalysts

One of the most significant problems in the discipline of materials science is identi-
fying acceptable metal oxide semiconductors for use as photocatalysts for the treat-
ment of pollutants in water systems utilizing solar energy. A perfect photocatalytic 
material would have the required bandgap qualities to absorb a broad range of the 
solar spectrum, dissociate water molecules, and remain stable in a water environ-
ment during reaction processes. It should also be cost-effective, simple to process, 
readily available, and nontoxic to the environment. Various metal oxide semicon-
ducting-based nano-assemblies have been created and proven to act as catalytic 
materials for water remediation under sunlight throughout the past few decades. The 
transition or d-block metal ions have shown excellent efficiency in semiconductors 
that have been extensively investigated as effective photocatalytic materials [28, 29].

The following factors affect the photocatalyst process:
(a) Dye concentration: A significant aspect of the photocatalytic reaction is 

the dye concentration. The catalyst should be capable of degrading a reasonable 



	 Topics in Current Chemistry (2023) 381:31

1 3

31  Page 16 of 54

amount of dye. A small amount of dye is adsorbed on the catalyst’s surface, 
which causes a photocatalytic reaction in light-stimulated conditions. The adsorp-
tion of dye on the photocatalyst surface is proportional to the dye concentration 
at the start. The initial dye concentration is an important parameter that should be 
closely checked. The proportion of dye degradation reduces with increasing dye 
concentration, but the needed quantity of photocatalyst must be conserved [134].

(b) Catalyst amount: The amount of catalyst used in the photocatalytic reac-
tion has an impact on dye degradation. In a heterogeneous photocatalytic process, 
one can increase the amount of photocatalyst in the reaction process to raise the 
proportion of dye photodegradation. More active sites are created in the photocat-
alytic reaction by increasing the catalyst number, which results in more reactive 
radicals being formed during photodegradation [135].

(c) pH: The pH of the solution is also important in the degradation process. 
Depending on the nature of the material and the qualities of the pollutant, the 
photocatalytic reaction can be either induced or suppressed by it. The surface 
potential of the catalyst (metal oxide NPs) can be altered by changing the pH of 
the solution. Pollutant adsorption on the photocatalyst surface may be affected as 
a result, causing an alteration in the photodegradation rate [136].

(d) Surface morphology of the photocatalyst: Significant parameters to 
be examined for photodegradation activity, such as particle size and shape, are 
included in the surface morphology. Each morphology is the result of a direct 
interaction between the catalyst’s surface and the organic contaminant [137]. The 
quantity of photons striking the photocatalyst’s surface can regulate the rate of 
photocatalytic activity. If the photocatalyst exhibits a range of morphologies, the 
reaction proceeds more quickly [138].

(e) Surface area: Materials with larger surface area should be used to achieve 
higher photocatalytic performance. Many active sites can be generated on the 
photocatalyst surface using these materials, resulting in the production of more 
radical reactive species for effective photodegradation [139].

(f) Temperature-dependent reaction: The temperature of the reaction should 
fall within this range of 0–80 °C to achieve efficient photocatalytic activity. When 
the temperature rises over 80  °C, the catalyst promotes e–h pair recombination 
and suppresses photocatalytic activity. As a result, the reaction temperature is 
critical for the photocatalytic activity [140, 141].

(g) Nature of the pollutants and their concentrations: The number and com-
position of specific contaminants in a water matrix can impact the degree of pho-
todegradation. When the pollutant concentration is higher, toxic pollutants cannot 
be addressed by photocatalysts such as TiO2 as this saturates the photocatalyst 
surface and prevents the formation of active radicals, lowering the photocatalytic 
effectiveness [142].

(h) Irradiation period and intensity of the light: The incoming light inten-
sity and irradiation period are important parameters in pollutant photodegra-
dation. The photodegradation percentage is inversely related to the intensity of 
light at high light intensities owing to the production of excitons and the sluggish 
recombination of e–h pairs. Alternatively, the photocatalytic surfaces undergo 
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e–h pair recombination, which decreases the reaction medium’s catalytic activity 
when the light intensity is increased [143].

i. Dopants on dye degradation: TiO2 NPs that absorb photons at very low ener-
gies can be made using a variety of ways. Bandgap engineering entails the inser-
tion of metals and nonmetals into photocatalytic materials to continuously alter and 
move the VB and CB. Surface modification can be accomplished by combining 
organic and semiconductor materials [144].

4.4.2 � Metal Oxides

Photocatalysis using semiconducting metal oxide-based nanostructures has been 
applied to clean wastewater and manufacture hydrogen fuel by splitting oxygen and 
hydrogen, among other things. The most important qualities of a photocatalytic 
material are its bandgap, optimum band-edge position, large surface area, perfect 
morphology, chemical stability, and reusability. TiO2, ZnO, SnO2, Cu2O, and WO3 
with these parameters have identical photocatalytic properties, such as light absorp-
tion, among diverse metal oxide semiconductors. This stimulates photogenerated 
charge carriers, resulting in the formation of holes that are capable of oxidizing 
organic compounds [145]. Direct sunlight, visible light, ultraviolet (UV) light, or 
a combination of both are used to activate semiconducting metal oxide nanostruc-
tures in this reaction. The e–h pairs are formed when photons excite charge carriers 
from the VB to the CB. The oxidation and reduction reactions that break down the 
molecular chains of organic contaminants use these photogenerated e–h pairs. The 
semiconducting metal oxide’s photocatalytic activity is based on two broad features 
[146]: (i) the oxidation of OH− anions to produce hydroxyl radicals, and (ii) the 
reduction of O2 to produce superoxide radicals. These radical reactive species can 
disinfect or mineralize organic contaminants into harmless byproducts. As a result, 
this process has enormous scientific significance in the fields of the environment, 
hydrogen fuel production, and energy. Photocatalytic materials are commonly used 
to remediate wastewater by removing pathogens and other hazardous contaminants.

The bandgaps and band-edge positions of various commonly used photocatalytic 
semiconducting materials are shown in Fig. 11 [147]. Although some of these semi-
conducting materials, such as ferric oxide (Fe2O3), have sufficient bandgap energies 
to act in the visible light area, their use as efficient photocatalysts suffers from cer-
tain disadvantages. Researchers are looking for alternative materials to solve these 
problems. Metal chalcogenide semiconductors (e.g., PbS and CdS) have been shown 
to exhibit photocatalytic activity. However, these show limited stability and haz-
ardous effects, and are prone to photocorrosion. Meanwhile, metal oxide semicon-
ductors with edges of the CB that fall below the normal hydrogen electrode (NHE) 
potential, such as SnO2, WO3, and Fe2O3 exhibit excellent stability and photocor-
rosive characteristics in aqueous solution. The charge transfer property for hydro-
gen evolution during water splitting is initiated by using an external voltage, accord-
ing to Gupta et al. [148]. When compared with TiO2 and ZnO materials, Fox et al. 
found that Fe2O3 showed poorer photoactivity owing to corrosion or the creation of 
short-lived charge transfer states between metal and ligand [131]. Bahnemann et al. 
[149] fabricated a ZnO material and discovered that it dissolves in water over time 
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because of its deteriorating stability. TiO2 nanomaterial, on the other hand, is corro-
sion resistant and shows excellent aqueous stability.

4.4.3 � Metal‑Doped Metal Oxides

Doping is the introduction of impurity atoms into any semiconducting material’s 
lattice system, as stated by Neamen [151]. The properties of the host material are 
influenced and engineered by the dopant atoms in the semiconductor lattices. A 
graphical example of faults in a lattice structure is shown in Fig. 12. Replacement 
or substitutional doping refers to substituting any impurity or foreign atom for one 
or more host atom. The following conditions must be met: (i) the crystal structure, 
electronegativity, and solubility states of both the host metal and the dopant metal 
must be the same, and (ii) the difference in atomic radii of the dopant atoms must 
not exceed 15%.

This type of doping is known as interstitial doping because the foreign atoms 
are wedged between typical lattice positions. The atoms are pushed out of the 
lattice, leaving voids between the host atoms. The interstitial and host atom radii 
can be evaluated to determine the chances of atoms entering interstitial locations. 
The atomic radius variations determine the precise location of the dopant atoms 
in the interstitial sites. Such cation/anion ratio (r+/r−) ionic radius measurements 
can be used to determine which cations will be present in certain interstitial loca-
tions. Cation coordination numbers at interstitial sites are determined by the ionic 
radius ratio, such as 6 (octahedral), 4 (tetrahedral), and so on. When the ionic 
radius ratio is increased, the number of anions surrounding the cations increases 
as well. Cations are wedged between anion planes in the tetrahedral holes of 
the tightly packed structures when the ionic radius ratio is between 0.225 and 
0.414. If it lies between 0.414 and 0.732, they are filled with octahedral holes 
[151]. Metal or nonmetal doping or the doping of molecules with semiconductors 

Fig. 11   Band-edge position of different metal oxide semiconductors in comparison with a standard 
hydrogen electrode [150]
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appropriate for photocatalysis is the best strategy for increasing a photocatalyst’s 
absorption capabilities and modifying its electrical properties (Fig.  13). All of 
these factors, as well as the dopant’s surface chemical composition and ionic 
radius, can influence the efficacy of the doping process. Metal and nonmetal dop-
ing have received a lot of attention in recent years. Many studies have examined 
the use of nonmetals (e.g., boron, sulfur, and carbon) as dopants in semiconduc-
tors to change the bandgap and band-edge position of a semiconductor to make it 
a visible-light active photocatalyst.

Fig. 12   Two types of doping depicted in the lattice structure of TiO2 crystals: substitutional and intersti-
tial doping, modified after Ref. [147]

Fig. 13   A semiconducting photocatalyst doped with metal NPs, modified after Ref. [153]
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Because of their greater bandgap energy, photocatalysts with semiconducting sur-
faces, such as TiO2, SnO2, and ZnO, can be made to operate in the ultraviolet range. 
It helps to change the semiconductor’s electrical structure and adjust the band-edge 
positions by moving the absorption range of the semiconductors into the visible 
light area by doping with suitable metal or nonmetal ions. Under visible light irra-
diation, the doped semiconductor demonstrates exceptional photocatalytic perfor-
mance [152]. Recent decades have seen much research into the active photodegra-
dation of hazardous organic pollutants, pharmaceutical waste, and deadly colors by 
using metal-doped TiO2 NPs under visible light. The absorption of TiO2 in the vis-
ible spectrum may be affected by structural variations. Furthermore, since the early 
1990s, extensive research has been done on TiO2 NPs doped with nonmetals such 
as nitrogen, carbon, fluorine, and sulfur. These photocatalysts have demonstrated 
exceptional activity against a variety of contaminants when exposed to sunlight.

4.4.4 � Plasmonic Photocatalysts

Plasmonic photocatalysts have piqued researchers’ interest because of their 
improved performance under visible light irradiation, wide spectrum of sunlight 
absorption, and better charge transport abilities [26, 154–157]. This type of material 
architecture can be formed by scattering noble-metal NPs on top of a semiconductor. 
Two separate characteristics are achieved in this manner: localized surface plasmon 
resonance (LSPR) and a Schottky barrier [26, 158]. Under visible light irradiation, 
these characteristics will aid in the efficient separation and transfer of charge carriers 
in the presence of visible light. The LSPR, which denotes significant oscillation on 
the surface of metal NPs and semiconductor photocatalysts, is the most important 
property for plasmonic photocatalysis.

Because of its short diffusion length and the interfacial charge transfer effect at 
the heterojunction, the metal–semiconductor junction in plasmonic photocatalysts 
aids in efficient e–h separation and allows charge carriers to be transferred quickly. 
Metal NPs such as Ag, Au, and Pt exhibit resonance oscillations at specific wave-
lengths that depend on the NP morphology, shape, and size. Plasmonic metal NPs 
exhibit resonance oscillations, which can change the absorption range of a UV light-
active photocatalyst (such as TiO2) into the visible range. The surface plasmon reso-
nance phenomenon in metal NPs can dramatically boost the visible-light absorption 
capabilities of a low-bandgap semiconducting photocatalyst such as Fe2O3. In a very 
thin layer of metal NPs, the total incoming light absorption can significantly improve 
the electron transport capabilities of a semiconductor with weak electron transport 
qualities. The distance between the photogenerated e–h and the noble-metal NP 
surface is tiny, as is the diffusion length. The charge carriers’ transport character-
istics are thus improved when photons are excited [26, 159]. The most significant 
mechanisms involved in plasmonic photocatalysis are depicted in Fig. 14. Au NPs 
are partially ringed on the TiO2 photocatalyst surface. Because of the material’s 
excess electrons and defects in the native oxygen, TiO2 NPs have n-type properties 
in general [160]. Conventional TiO2 photocatalysts have been compared and ana-
lyzed thoroughly to assess the photocatalytic efficacy of Au–TiO2 nanostructures. 
Figure 14 shows how NPs of Au on the TiO2 surface can absorb all wavelengths of 
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electromagnetic radiation in the visible spectrum, according to LSPR. TiO2 e–h col-
lective oscillation uses an interfacial charge transfer technique to aid in the reduction 
and oxidation of hazardous contaminants in an aqueous medium.

When compared with typical TiO2 photocatalysts, this interfacial charge transfer 
action significantly reduces electron and hole recombination. The recombination of 
electron–hole pairs is a significant factor that can alter the semiconductor’s photo-
catalytic efficacy. One of Au’s most important functions in plasmonic photocatalysts 
is to make it easier to absorb visible light and to prevent electron–hole pair recom-
bination. As a result, the material may be capable of higher photocatalytic efficiency 
than traditional TiO2 photocatalysts.

4.4.5 � Carbon Family

Carbon nanomaterials have recently received a lot of attention owing to their 
unique physicochemical, structural, optical, and electrical capabilities [161]. A 
wide range of nanocomposites can be created for use as conventional and tra-
ditional photocatalytic materials for light-derived water remediation applications 

Fig. 14   Comparison of plasmonic photocatalysts with semiconductor photocatalysts, illustrating the 
charge transfer mechanism [26]
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while retaining the advantageous properties of carbon materials [162]. Water dis-
infection, oil adsorption, and pathogen removal from water bodies have all been 
investigated using nanomaterials in various forms. The physicochemical features 
of carbon-based nanostructures, for example, can remove organic, inorganic, and 
other heavy metal contaminants from water sources. Carbon-based adsorbents 
are commercially available. Because of their quick photodegradation and charge 
transport capabilities, fullerenes, graphene, and carbon nanotubes are currently 
utilized as cocatalysts for traditional photocatalytic materials such as TiO2, ZnO, 
SnO2, and others. Above all, carbon-based nanomaterials have the potential to 
break down complex and dangerous contaminants in water bodies with high effi-
ciency. Under UV light illumination, graphene-decorated TiO2 nanocomposites 
have demonstrated high photocatalytic activity, according to Kamat et al. [163]. 
This nanocomposite breakthrough was demonstrated in depth using numerous 
material combinations for improved activity. As a result of their excellent phys-
icochemical properties, strong electron-accepting capacity, regulation of work 
function, and electronic characteristics, graphene and its derivatives outperform 
other carbon nanostructures in catalysts against a variety of contaminants. These 
characteristics make graphene-based nanocomposites great candidates for pho-
tocatalytic applications, as they can modify the photocatalytic performance of 
semiconductors. Suárez-Iglesias et al. used a variety of photocatalysts to generate 
variations in morphology, joining with graphene via electrostatic interaction or 
chemical bonding for photocatalytic applications. Organic, inorganic, a combi-
nation of metalorganic frameworks, semiconductors, plasmonic metals, nonmetal 
plasmonic materials, and dyes are all employed as photocatalysts [164].

Catalytic materials such as graphite, activated carbon, and soot have long been 
replaced by carbon nanotubes (CNTs) because of their superior catalytic proper-
ties [162, 165]. Because CNTs have many active sites and a large surface area, they 
have recently been discovered to be effective at absorbing some hazardous chemi-
cals. When compared with pristine CNTs and pristine TiO2, the integration of TiO2 
into the CNT matrix has proved to result in an effective photocatalytic material with 
increased activity. The valence band traps electrons, allowing a broad range of visi-
ble light to be absorbed. The recombination rate of e–h pairs may be greatly reduced 
by using these nanocomposites. The energy gap of the composite nanostructures can 
be reduced to achieve visible light absorption of the nanocomposite.

Organic materials provide additional energy and environmental advantages, 
such as chemical inertness, affordability, and the capability to tackle a wide range 
of environmental challenges. Metal–organic frameworks, graphitic carbon nitride, 
and various organic dyes can be linked together with graphene or CNT nanostruc-
tures, metal–organic frameworks, graphitic carbon nitride, and other organic dyes 
to be employed as photocatalysts [166]. During the coupling, a Schottky-type het-
erojunction is formed between the organic semiconductor and graphene surfaces, 
which efficiently facilitates charge transport throughout the junction. The struc-
tural, electrical, and physicochemical features of graphene–organic semiconduc-
tors are facilitated by this type of layered design with metal-free photocatalysts, 
resulting in remarkable photocatalytic performance. Using graphene/g-C3N4 
nanocomposites, Xiang et al. demonstrated the use of a combination of chemical 
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reduction and impregnation techniques. The authors claimed that, by splitting 
water into hydrogen and oxygen, this material might generate hydrogen.

4.4.6 � Z‑Scheme in Photocatalysis

Because they are capable of capturing the visible spectrum of electromagnetic 
radiation and causing multiple photodegradation reactions, the design and devel-
opment of properly assembled metal oxide-based semiconducting photocatalysts 
are encouraging the use of nanomaterials to address environmental issues. In 
photocatalysis, the development of the Z-scheme has many advantages, includ-
ing excellent sunlight harvesting capability, a high degree of redox competency, 
as well as the ability to quickly create active species for oxidation and reduction 
processes, all of which contribute to improved photocatalytic activity (Fig. 15). 
In such a photocatalysis system, two semiconducting photocatalyst materials are 
connected by an appropriate redox mediator in the Z-scheme. This technology is 
more efficient at utilizing or absorbing sunlight than a traditional photocatalysis 
system. In addition, the quantity of energy required to activate the Z-scheme is 
reduced. Any of the photocatalysts in this system can be used as a water oxidation 
and reduction potential dual-purpose system. Tada et al. described a method for 
making CdS–Au–TiO2 nanocomposites and how charge transfer processes affect 
the photocatalytic activity. In more detail, Au NPs can be placed between CdS 
and TiO2 NPs, influencing the TiO2 photoinduced electron transfer and CdS NPs 
photoinduced hole transfer. Thereby, the photoinduced electrons have a strong 
reduction ability on CdS, while photoexcited holes have a significant oxidation 
ability on TiO2 NPs. A shuttle redox mediator system is another name for this 
electron transport mechanism. Only Z-scheme photocatalysts benefit from this 
type of charge transfer mechanism. These two semiconducting systems are known 
as Z-scheme photocatalysts because the charge transfer processes in them resem-
ble the shape of the letter “Z” [63, 167–170].

Fig. 15   Three alternative kinds of photocatalysis system, illustrated with a band-edge diagram [166]
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5 � Green Materials for Green Photocatalysts

5.1 � Green Synthesis of Novel Photocatalysts by Microorganisms (Bacteria, Fungi, 
and Algae Biosynthesis) (Table 3)

The employment of microbial organisms (bacteria, fungi, yeasts, actinomycetes, 
viruses, etc.) in nanotechnology and microbial biotechnology is linked to the 
creation of innovative photocatalysts in a more environmentally friendly man-
ner [171]. Photocatalytic NPs have been widely synthesized using prokaryotic 
bacterial species. Bacterial synthesis is a suitable alternative for NP manufactur-
ing because of their easy availability in the environment and capacity to adapt 
to harsh environmental conditions. Bacteria are normally easy to grow and cul-
tivate, and their biosystem may be altered easily [96, 172]. Khan and Fulekar, 
for example, created NPs of TiO2 in the size range of 15.23–87.6  nm by using 
Bacillus amyloliquefaciens bacterial culture. The bacterial species were collected 
and isolated from effluents of the dairy sector in Mehsana, India. It is worth not-
ing that Fourier-transform infrared (FTIR) spectroscopy revealed the presence of 
α-amylase, which is primarily involved in the manufacture of TiO2 NPs (NPs). 
Under artificial UV exposure, NPs of biosynthesized TiO2 showed photocatalytic 
degradation of the dye Reactive Red 31 (RR31) [173]. Dhandapani et  al. [174] 
used Bacillus subtilis (FJ460362) bacterium to make TiO2 NPs with a diameter of 
10–30 nm. The formation of an aquatic biofilm was used to test the photocatalytic 
activity of the produced TiO2 NPs. They also discovered that photocatalysis pro-
duced H2O2, which inhibited biofilm formation. Bacillus licheniformis microbial 
strains (MTCC 9555) were used to produce ZnO nanoflowers (200 nm to 1 μm in 
diameter). Methylene Blue (MB) was used as a model pollutant to test the pho-
todegradation efficiency of the ZnO nanoflowers. Within 60 min, ZnO nanoflow-
ers showed 83% decolorization efficiency. After three recycles, ZnO nanoflowers 
showed good photostability, according to the authors [175]. Fungi, unlike other 
microbes, may easily create NPs owing to the presence of enzymes, proteins, 
and reducing agents on their cell walls. Metal salt solution is quickly reduced in 
the presence of enzymes on the cell wall, resulting in extracellular NPs. Because 
of the large-scale production and the ease of processing downstream, this is a 
financially feasible method. Jain and colleagues demonstrated the production of 
zinc oxide NPs from zinc salt using Aspergillus sp. NJP02, a fungal species. Zinc 
oxide NPs were produced extracellularly by Aspergillus sp. from zinc acetate. 
UV-induced degradation of the dye Methylene Blue (MB) was demonstrated. 
The photocatalytic degradation performance of zinc oxide NPs has been reported 
[176]. The fungus Trichoderma harzianum was also utilized to make cadmium 
sulfide NPs (CdS NPs) in the size range of 3–8 nm with a UV absorption peak at 
332 nm. Photocatalytic decomposition of Methylene Blue (MB) dye in a reactor 
was utilized to test the photocatalytic degradation performance of the biologi-
cally generated CdS NPs. After 60  min, with a reaction rate of 0.0076 min−1, 
the degrading efficiency was reported to be 37.15% [177]. Algae are basic pho-
tosynthetic, autotrophic organisms that may be unicellular (e.g., Chlorella) or 
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multicellular (e.g., Chlorella) (e.g., brown algae). In the same way that yeasts 
have a limited number of research reports, do does this topic. Algae-based NP 
preparation is a relatively new field of study [21]. For the production of ZnO NPs, 
the green microalga Chlamydomonas reinhardtii has been used. Fast production 
of ZnO nanoflowers was described. The photocatalytic activity of these nanoflow-
ers was demonstrated in the presence of sunlight. After 2  h, the photocatalytic 
effectiveness was found to be 90% [178].

5.2 � Green Syntheses of Novel Photocatalysts by Using Plant Extracts

The green synthesis of novel photocatalysts with the help of microorganisms has 
been studied extensively during the last few decades. The biggest disadvantage of 
the greener approach to microbial NP synthesis is the maintenance and procurement 
of microbial strain cultures. Furthermore, proper and careful treatment of human 
pathogenic bacteria is critical. In this case, any carelessness could result in infec-
tion and disease. As a result of its virulence, plant extract-mediated NP synthesis 
has an advantage over microbial synthesis [179]. Plant-assisted photocatalyst syn-
thesis has been shown to be easy and superior to microorganism-assisted synthesis 
because it does not require the preservation of microbial cultures. Plant extracts have 
already been shown to decrease and stabilize a variety of metal cations into stable 
NPs. Many organic compounds found in plant extracts, such as glucose, fructose, 
water-soluble hydrocarbons, proteins, and other bioactive substances, can be uti-
lized to reduce and stabilize single and multiple metal cations to NPs in a “one-pot” 
manufacturing process [120]. Many research groups have already investigated green 
synthesis pathways for metal NP manufacturing from plant extracts (leaves, flow-
ers, roots, seeds, etc.), highlighting their potential applications [180–182]. Elango 
et  al. also demonstrated that a methanolic extract of Persea americana (avocado) 
seed may be used to make tin oxide (SnO2) NPs. Initially, the fabrication of SnO2 
NPs was confirmed [183].

Ultraviolet–visible (UV–Vis) spectroscopy has also been used in this field. The 
degradation of phenolsulfonphthalein dye was used to measure the photocatalytic 
activity of SnO2 NPs. The SPR band at 426 nm with a clear surface plasmon res-
onance was used to determine the appropriate dye degradation period [183]. In 
another study, root bark extracts of Catunaregam spinosa were used to obtain stable 
spherical tin oxide NPs (SnO2 NPs) with an average size of 47 ± 2 nm. The pres-
ence of bioactive chemicals in the extract during contact was confirmed by X-ray 
diffraction (XRD) spectrum analysis and FTIR analysis. The breakdown of Congo 
Red in a multilamp photoreactor with 92% irradiation was used to measure the 
photocatalytic activity of the NPs. An initial degradation rate of 0.0952 min−1 and 
pseudo-first-order kinetics were observed in the Congo Red decay [184]. Surendra 
and Roopan used Moringa oleifera peel extract and microwave irradiation to obtain 
green cerium oxide NPs (CeO2 NPs). CeO2 NPs were characterized by UV–Vis 
spectroscopy, XRD analysis, FTIR spectroscopy, and high-resolution transmission 
electron microscopy (HRTEM). These CeO2 NPs also exhibited antibacterial and 
photocatalytic properties. Gram-negative bacteria (Escherichia coli) were more 
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resistant to CeO2 NPs than Gram-positive bacteria (Staphylococcus aureus). The 
photodegradation efficiency of CeO2 NPs was measured using a Heber multilamp 
photoreactor with Crystal Violet dye. CeO2 NPs were found to have a maximum 
catalytic effectiveness of 97.5% [185]. Kumar et al. investigated the green synthesis 
of magnetite NPs (Fe3O4 NPs) using Andean blackberry leaf extract. XRD analysis, 
transmission electron microscopy (TEM), FTIR spectroscopy, dynamic light scat-
tering (DLS) measurements, and thermogravimetric (TG) techniques were used to 
investigate the features of the NPs such as their crystallinity and shape, as well as 
surface parameters. The NPs were 94% metal and 6% capping ligand, according to 
the TG analysis. Standard pollutants Congo Red (CR), Methylene Blue (MB), and 
Methyl Orange (MO) were degraded in the presence of sunlight to test the photo-
activity of the Fe3O4 NPs. The photodegradation of the dyes was also found to be 
linked to the in situ production of ROS, such as the hydroxyl radical (OH.), super-
oxide radical (O2.), and hydrogen peroxide (H2O2) [186]. Bishnoi et al. also showed 
that Cynometra ramiflora fruit extract may be used to make magnetic iron oxide 
NPs (MIO NPs) in a stable manner. The breakdown of MB dye by sunlight irradia-
tion was used to test the photocatalytic activity of the green-produced NPs. Under 
sunlight illumination, improved production of OH and faster decolorization of MB 
were achieved thanks to the large surface area of the MIO NPs [187]. Naik et  al. 
employed aqueous Cinnamomum tamala leaf extract as a reducing/capping reagent 
for the manufacture of Au/TiO2 nanocomposite through a more environmentally 
friendly process. The improved nanocomposite showed better degradation of Methyl 
Orange (MO) dye than Degussa P-25 TiO2 under solar irradiation [188]. Rostami-
Vartooni et al. [189] examined the synthesis of Ag/TiO2 nanocomposite in another 
study. As a reducing and stabilizing agent, they employed Carpobrotus acinaci-
formis leaf and flower extract. XRD analysis and field emission scanning electron 
microscopy (FE-SEM) were used to examine the morphology of the Ag/TiO2 nano-
composite. The degradation of two distinct dyes was used to measure the photocata-
lytic activity of the Ag/TiO2 nanocomposite. The photocatalytic activity of the Au/
TiO2 nanocomposite remained constant after four cycles, according to the research-
ers [189]. Azadirachta indica leaf extract, which is rich in bioactive compounds, was 
shown by Sankar et al. to be useful in the production of titanium dioxide NPs. It was 
found that the average particle size of these NPs was 124 nm. Under bright sunlight, 
photocatalytic degradation was carried out, and the photocatalyst demonstrated deg-
radation activity [190]. For the manufacture of titanium dioxide (TiO2) NPs, reduc-
ing and capping agents can be made from the dried leaves of the plant Jatropha 
curcas L., which are rich in bioactive compounds such as tannins. Under sunlight, 
the green-produced TiO2 NPs were used to photocatalytically reduce real tannery 
wastewater. The reduction of chemical oxygen demand (COD) and Cr+6 was deter-
mined to be 82.26% and 76.48%, respectively [191].

Rambutan (Nephelium lappaceum L.) fruit extract can also be utilized to biosyn-
thesize stable ZnO NPs with diameters between 25 and 40 nm, according to Kar-
nan and Samuel Selvakumar. The degradation of Methyl Orange (MO) dye under 
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artificial UV irradiation was used to measure the photocatalytic activity of ZnO NPs. 
The decolorization efficiency was found to be 83.99% after 120 min of illumina-
tion. COD values were used to measure the mineralization efficiency, and after 120 
min of UV light, significantly lower COD values were observed when applying the 
ZnO NPs synthesized using biosynthetic methods [192]. Another work used dried 
Camellia sinensis leaf extract to make zinc oxide NPs from zinc nitrate solution via 
a “one-pot” technique. The degradation efficiency of the produced zinc oxide NPs 
was higher than that of commercially available zinc oxide NPs [193].

ZnO NPs can also be made from the latex of Carica papaya milk (CPM) [194]. 
Nanoflowers, agglomerated nanobuds, agglomerated prismatic tips, nanobuds, 
and prismatic tips were among the five nanostructures created. Furthermore, the 
produced ZnO nanoflowers exhibited superior antibacterial action against Pseu-
domonas aeruginosa and Staphylococcus aureus. FTIR spectroscopy, SEM, trans-
mission electron microscopy (TEM), and HRTEM were used to analyze the ZnO 
nanoflowers. As a result of its small particle size, the photocatalytic activity of the 
ZnO nanoflowers was increased. The usefulness of the ethanol extract of Mimosa 
pudica leaves has been demonstrated in several investigations, and coffee powder 
has also been employed to synthesize ZnO NPs. Because of its larger crystallite 
size, the ZnO NPs made from Mimosa pudica leaf extract had lower bandgap energy 
[195]. Fowsiya et al. [196] recently described a simple method for phytosynthesis of 
ZnO NPs using Carissa edulis fruit extract (C. edulis). The production of ZnO NPs 
is illustrated by the surface plasmon resonance (SPR) at about 358 nm, according to 
the authors. Decolorization of Congo Red was performed in a photoreactor, showing 
a most efficient rate constant (k) of 0.4947, achieving 97% color removed. Taber-
naemontana divaricata green leaf extract includes flavonoids, steroids, terpenoids, 
phenolic acids, phenylpropanoids, and enzymes, according to Raja et  al. [197], 
and aqueous extract was employed for the environmentally friendly manufacture 
of zinc oxide NPs (ZnO NPs). The antibacterial activity of ZnO NPs was investi-
gated against three bacterial strains: E. coli, Salmonella paratyphi, and Staphylococ-
cus aureus. The antibacterial activity of ZnO NPs against S. paratyphi was lower. 
Methylene Blue (MB) decolorization under sunlight was examined to determine the 
photocatalytic activity of the generated ZnO NPs, taking 90 min to complete. For 
greener production of ZnO NPs, Moringa oleifera natural extract was employed by 
Archana et al. [198], and the average particle size was found to be between 100 and 
200 nm. These NPs were used to generate hydrogen via photocatalysis. The crys-
talline structure of ZnO NPs was confirmed by XRD analysis and Raman investi-
gation. Vidya et  al. [199] demonstrated green synthesis of zinc oxide (ZnO) NPs 
utilizing Artocarpus heterophyllus leaf (jackfruit) extract. The produced ZnO NPs 
had a hexagonal wurtzite-like shape with particle size of 15–25 nm, according to 
TEM investigation. This approach produces ZnO NPs with a high photodegradation 
efficiency (> 80% in 1 h) against Rose Bengal dye. Langmuir–Hinshelwood kinetics 
were found to be responsible for the degradation of the Rose Bengal dye.
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6 � Environmental Applications of Photocatalysis

The main applications of photocatalytic phenomena are related to the following 
processes:

• Air treatment: the elimination of ethylene from fruits and vegetables during 
storage, air stripping of soil for photocatalytic treatment, cleaning of indoor and out-
door air and off-gas emissions, odor elimination, etc.

• Water treatment: Digestion and purification of effluent for use in bioreactors 
and other processes that produce usable water, etc.

• Active surfaces: Degradable or antifog materials that can sterilize or sterilize 
themselves (metals, ceramics and tiles, paints, paper, concrete and cement, glass, 
textiles, plastics, etc.)

• Green chemistry: Photocatalyzed chemical production processes that are more 
environmentally and economically beneficial

• Energy conversion: Water splitting to generate hydrogen gas, or photosynthe-
sis to reduce carbon dioxide gas

6.1 � Air and Water Treatment

Photocatalytic reactions require irradiation to begin the reaction. A suitable radia-
tion source is therefore required for photocatalytic reactors; this can be either arti-
ficial or natural. A few examples of manmade sources include arc and incandescent 
lamps, fluorescent lights, lasers, and light-emitting diodes (LEDs). The radiation 
from these devices can be focused or redirected with the help of reflectors or fiber 
optics. Reflectors of various types, materials, and concentration ratios can be used 
to collect solar radiation, or it can be captured directly by the reactor using this 
technique [241, 242]. It is possible to categorize photoreactor designs for water and 
air purification based on the radiation characteristics (solar or artificial, concen-
trated or not), catalyst dispersion (immobilized in various substrates or suspended 
in solution), reactor geometry (flat plate, parallel plate, U-shaped, fountain, etc.), 
and operation mode. Many photoreactor designs for water and air purification have 
been proposed in scientific literature and patents (batch or continuous). Using the 
kinetic, mass transfer, and radiative transfer equations (RTEs), a simplified or rigor-
ous mathematical model for the photoreactor can be developed following the selec-
tion of the photocatalyst and radiation source [243].

Photodegradation rates (r) for chemical contaminants in water and gas phases are 
related to the fraction of covered surface (Eq. 15) according to the Langmuir–Hin-
shelwood (L–H) kinetic equation (Eq. 15).

where k is the rate constant, K is the pollutant adsorption constant, and C is the 
pollutant concentration. It is generally accepted, however, that the rate constants 
and orders established using this kinetic model are only apparent. Recent years 
have seen the development of alternative kinetic models such as the direct–indirect 

(15)r = −
dC

dt
=

kKC

1 + KC
,
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(D–I) model [244], in which the kinetic constants are characterized in terms of the 
sequence of main events happening during the photocatalytic processes. All of these 
factors, along with the radiation intensity and wavelength distribution, the type and 
concentration of pollutants, flow rate, characteristics (turbidity, pH, ionic strength, 
and dissolved oxygen) of the treated air or water, properties (crystallinity, porosity, 
doping, loading, etc.) of the catalyst, and reactor design impact on the efficiency 
and selectivity of the system. The temperature should have little effect on the lamp’s 
performance because of the photonic activation of the process; however, high tem-
peratures may favor charge carrier recombination and disfavor pollutant adsorption. 
Each application must first be tested in the laboratory because comparing and scal-
ing up are extremely difficult tasks.

The deployment of effective, cost-effective, and environmentally friendly water 
treatment technologies is in great demand, fueled by the world’s rising population 
and more stringent legislation. There is a considerable possibility that heterogeneous 
photocatalysis, either alone or in conjunction with other processes, could improve 
current technological options significantly. Considering that microorganisms are the 
primary source of contamination in drinking water, disinfection is an important pho-
tocatalytic technique for this application. Meanwhile, organic materials as well as 
trace pollutants from medications, insecticides, and personal care products are found 
in wastewater. Heavy metals or organic compounds may also be present in industrial 
wastewater. Insecticides such as aldrin, dichlorvos, and lindan (as well as chloroform 
and carbon tetrachloride, trichloroethylene, and chlorobenzene) and formaldehyde 
(as well as formaldehyde, phenol, and methylbenzene) are among the most common 
pollutants. Degradation mechanisms for a few of these have been discovered [245], 
but the many factors that influence such photocatalytic processes, as well as the lack 
of standardization in photocatalytic processes, often lead to conflicting conclusions 
by different researchers.

Continuous flow tubular reactors with TiO2 suspensions and nonconcentrat-
ing solar compound parabolic collectors (CPC) are used in this experiment [246], 
and are the most extensively used for aqueous phase photocatalytic reactions. For 
commercialization, it is necessary to recover the catalyst (e.g., via sedimentation 
or filtering), although powdered TiO2 dispersions are used in most water treatment 
research studies [247]. The use of titania immobilized on a variety of supports, such 
as adsorbent substrates, and the design of reactors that maintain high efficiency 
despite the reduced catalyst surface area and mass transfer limits in immobilized 
systems necessitate a great deal of effort. Reactors utilizing hybrid membranes and 
photocatalysis [67] and recoverable magnetic photocatalytic particles are promising 
solutions [248]. The impact of various operational parameters has already been stud-
ied in several books and reviews [67, 245]. The performance of aqueous photocata-
lytic systems is heavily influenced by the pH of the water, in part because of the low 
adsorption of contaminants owing to water saturation. The neutral surface charge of 
TiO2 (point of zero charge, PZC) (pH range of 4.5–7.0) results in no interaction with 
polar substances, such as water.

The low solubility of oxygen (and thus the need for aeration), radiation absorp-
tion in turbid waters, or the presence of water natural components that act as scaven-
gers. Additionally, the kinetics and costs, as well as the suitability of this method for 
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water treatment, are governed by reactive species such as carbonates or other inor-
ganic anions [249]. One of the most significant disadvantages of TiO2 photocataly-
sis, as with other advanced oxidation technologies (AOTs), is their relatively high 
operating costs compared with traditional biological treatments, particularly the 
slow kinetics compared with the homogeneous photo-Fenton reaction, which makes 
the latter more appealing to the scientific community despite the chemical consump-
tion. As a result, heterogeneous photocatalytic water purification systems currently 
focus on the treatment of non-biodegradable wastewater and the use of solar radia-
tion, particularly in remote areas and developing countries, or the combination of 
other physical or chemical operations to achieve a synergistic effect. Biological 
treatments, membrane reactors, and physical adsorption do not affect the photocata-
lytic efficiency, but they do improve the overall process when used in conjunction 
with ultrasonic irradiation, a photo-Fenton reaction, ozonation, or electrochemical 
treatment [250, 251]. Since it reacts with water-soluble contaminants that are not 
biodegradable, photocatalysis is currently a popular pretreatment method before bio-
logical water treatment.

6.2 � Self‑Cleaning Materials

The air-cleaning and self-cleaning, self-sterilizing, and antifogging properties of 
TiO2-containing materials have sparked interest from the scientific community as 
well as the construction and vehicle sectors. However, these materials are usually 
optimized for their primary function. Material that is self-cleaning but lacks the 
adsorption capacity needed for air treatment applications is preferable to material 
that is smooth, such as the thin coating on a window. The self-cleaning properties 
of TiO2 surfaces can be attributed to a combination of reasons. Adsorption sites for 
particles such as soot and grime can be removed through photocatalytic elimination 
of organic deposits as well as the simultaneous inactivation and mineralization of 
surface microorganisms (self-sterilizing properties). Second, photoinduced superhy-
drophilicity prevents water from forming surface droplets; instead, when exposed 
to light, a homogeneous thin water layer covers the surface beneath the dirt, allow-
ing dirt to be washed away readily. Superhydrophilicity also prevents fogging since 
water attempts to run off the surface (fogging occurs at water contact angles greater 
than 200°). Metals can be protected against corrosion by using TiO2 coatings, which 
introduce electrons into the metal, or the heat transfer rate can be increased on supe-
rhydrophilic surfaces, which reduces water usage while also improving heat trans-
mission. For example, the latent heat of evaporation is employed to cool buildings 
using falling film evaporators and passive cooling systems based on this effect [252]. 
Nanofunctionalized thin films over glasses have recently been shown to have antire-
flective and photocatalytic characteristics compatible to low-refractive-index nano-
porous silica and high-refractive-index titania in low-refractive-index nanoporous 
silica–titania [253].



1 3

Topics in Current Chemistry (2023) 381:31	 Page 33 of 54  31

6.3 � Green Materials in Fuel Cells

Fuels produced using green methods or chemistry are a critical source for power 
generation today. The limited availability of existing fuels, such as petroleum prod-
ucts, results in higher environmental pollution and costs. It is thus critical to find 
a new source of energy materials that is ecologically benign, low cost, and readily 
available in Nature. Green photocatalysts enable a process that uses light energy and 
natural resources to produce fossil fuels. Biomass can be used to produce hydrogen 
fuels and biodiesel, for example [254, 255]. Hydrogen fuel is one of the zero-carbon 
transportation fuels that can be made from biomass, but it has limitations in terms 
of large-scale manufacturing [255]. This type of fuel, which is made from natural 
resources, can help to reduce greenhouse-gas emissions and enhance the quality of 
the air we breathe. Nanotechnology is the most effective technique for transferring 
this approach into the real world [256–258]. This provides a fantastic platform for 
research organizations to use nanotechnology to develop novel renewable energy 
materials. Li-ion batteries, flow batteries, supercapacitors, fuel cells, solar cells, 
and fire- and heat-retardant insulation applications are among the areas where nano-
technology plays an important role in alternative energy production, according to 
recent studies. Nanotechnology offers a more efficient method of producing solar 
cells. Essentially, the fabrication process is solely reliant on the absorption of light 
and the conveyance of charge carriers, both of which are easily accessible and have 
a low production cost [154]. In dye-sensitized solar cells, coloring compounds taken 
from plants are utilized for sensitization in dye-sensitized solar cells (DSSCs). The 
coloring chemicals aid in the absorption of a wider range of light, increasing the 
efficiency of solar cells. Hydrogen fuels are created by converting biomass, which 
uses 35% less energy than the electricity required to go 400 km in a battery-powered 
electric car.

6.4 � Green Photocatalytic Disinfection of Water

Water is a necessity for human survival. In our ecology, the availability of fresh, 
pure water is quite restricted [259]. The majority of water sources have been polluted 
as a result of urbanization and industry. Textiles, tanneries, and pharmaceuticals are 
among the businesses that dump waste or byproducts into water bodies. Solar energy 
is a plentiful natural resource that is freely available on the Earth’s surface, and the 
collective radiation of sunlight energy can eradicate harmful bacteria in water bod-
ies. Various process characteristics, such as light intensity, incoming light tempera-
ture, and pathogen type, can directly inhibit the photocatalytic efficiency of solar 
disinfection (SODIS) processes [260]. Heterogeneous photocatalysis is the most via-
ble method for effectively killing microorganisms. Clasen et al. [261] reported on a 
cost-effective strategy for preventing diarrhea in the home. They concluded that the 
most cost-efficient and effective solar disinfection technology is a household-based 
water purification system. Even though it is slightly more expensive than chlorina-
tion, it has a higher overall disinfection efficacy than SODIS [260]. By immobilizing 
the photocatalyst under UV irradiation, the water purification process can be carried 
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out in aqueous solution [262]. The disinfection level of the aqueous solution should 
be measured before and after light exposure at regular intervals. TiO2 photocatalysts 
outperform UVA therapy alone in terms of water disinfection efficiency. Alrousan 
et al. used two different configurations with and without a photocatalyst (TiO2) to 
demonstrate solar light-induced photocatalytic (SPC-DIS) and solar disinfection 
(SODIS) of E. coli-polluted water [263]. According to recent scientific findings, the 
most promising strategy for achieving effective catalytic activity under visible light 
irradiation is doping to achieve metal ion inclusion in the host material [256, 264]. 
However, research on microorganism disinfection is sparse, and reported publica-
tions are likewise few when compared with papers on photocatalytic disinfection of 
organic pollutants.

6.5 � Photoelectrochemical H2 Production via Water Splitting

It is widely known that using an appropriate semiconductor photocatalyst can enable 
effective conversion of solar energy to chemical energy for the generation of clean 
energy [265]. Thus, using semiconductor photocatalysts with efficient nanostruc-
tures that have a high surface-to-volume ratio and a high capacity for light absorp-
tion, hydrogen can be created by photoelectrochemical (PEC) water splitting. The 
two half-reactions that make up a typical PEC cell are (a) the oxygen evolution reac-
tion (OER), which typically takes place on an n-type semiconductor as a photoan-
ode, and (b) the hydrogen evolution reaction (HER), which typically takes place on 
a cathode as a counterelectrode. By evaluating various nanostructured semiconduc-
tor photocatalysts, several researchers are making considerable efforts to increase 
the efficiency of the hydrogen generation rate under solar irradiation [265].

6.6 � Photocatalytic CO2 Reduction

As of 2019, it was stated that the significant use of fossil fuels caused enormous 
carbon emissions, with an atmospheric concentration exceeding 400  ppm. A sig-
nificant quantity of CO2 is released into the environment as a result of the exces-
sive use of fossil fuels (e.g., petroleum, gas, and coal) [265]. Around 76% of yearly 
greenhouse gas (GHG) emissions are attributed to the release of CO2, which has 
serious negative effects on the environment and human health by contributing to 
climate change, ocean acidification, and ocean warming [265]. By using photocata-
lytic technology to convert CO2 into valuable small-molecule chemical products or 
energy sources (such as CO, CH4, HCOOH, and other chemicals), the energy crisis 
and these serious ecological problems could be resolved. The conversion of GHGs, 
such as CO2, into useful goods and the reduction of its disastrous release have both 
been the subject of extensive investigation by several scientists. As a consequence of 
such development, environmental issues including climatic effects such as ecologi-
cal degradation, seawater acidification, and the rise in ocean levels could be lessened 
[265, 266].
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6.7 � Photocatalytic Dye/Drug Degradation

According to a World Bank assessment, the textile and dyeing sectors are responsi-
ble for between 17% and 20% of water contamination [267]. With an annual world-
wide output of 8 × 105 tons of dyes, of which around 200,000 tons are textiles and 
dyes, the textile, leather, food, and paper sectors are principally responsible for man-
ufacturing dye wastewater, according to a newly published report [268]. Numerous 
synthetic dyes used in textiles, including cationic dyes such as Safranin O, Rhoda-
mine B, Malachite Green, Rhodamine 6G, Methylene Blue, and Crystal Violet, and 
anionic dyes such as Eosin Y, Eriochrome Black T, Phenol Red, Methylene Orange, 
and Congo Red, are toxic and harmful organic contaminants that can hinder the pho-
tosynthesis process of aquatic plants and pose a threat to the other organic wastes 
that are damaging to society and the environment are created by the chemical and 
pharmaceutical industries. To meet the needs of modern lifestyles and expanded 
healthcare, pharmaceutical and personal care products (PPCPs) have been produced 
and increasingly used during the course of the last few decades [272]. There are over 
3000 commonly used medications, and their use is still increasing globally, accord-
ing to the European Union market [273]. According to a recent analysis, the amount 
of antibiotics used globally is estimated to be between 100,000 and 200,000 metric 
tons. Of the antibiotics used, 70–90% remain chemically unchanged or are elimi-
nated from the body as active metabolites [274]. In addition, the coronavirus disease 
2019 (COVID-19) epidemic has considerably expanded PPCP production and usage 
worldwide in recent years. According to the People’s Republic of China’s National 
Health Commission, the usage of antiviral and antibiotic medications increased dra-
matically during the pandemic [275]. Water can contain pharmaceutical pollutants 
in amounts ranging from ng/L−1 to µg/L−1. Even at these low concentration levels, 
they can represent a major hazard to the health of living creatures owing to their 
chemical and physical characteristics [276]. Numerous attempts have been made to 
develop highly effective semiconductor-based photocatalysts to photodegrade dye 
and pharmaceutical pollutants owing to the serious issues associated with dye and 
pharmaceutical pollutants in water, as well as to the significant advantages of photo-
catalysis processes in removing harmful pollutants from water.

7 � Simultaneous Photocatalysis

Significant effort and studies have been devoted to the use of suitable semiconduct-
ing photocatalysts in a variety of crucial chemical reactions, e.g., for wastewater 
treatment, H2 generation, CO2 reduction, organic transformations, N2 photofixation, 
biomass conversion to valuable products, and heterogeneous photocatalytic reac-
tions, over the past 10 years [265]. These processes are well known in traditional 
photocatalytic research, and they take place under controlled conditions and are each 
studied independently in literature. The simultaneous use of two or more function-
alities in a single photocatalytic device, however, is a more recent creative strategy 
[265]. The difficult aspect is that merging two functions into a single photocata-
lytic system necessitates a novel approach to semiconductor photocatalyst design, 
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control, and engineering with specific properties for each use in a given environ-
ment. The groundbreaking study of Kim et al. [277] on simultaneous H2 generation 
and phenolic compound degradation by employing a TiO2 surface decorated with 
platinum nanoparticles and fluorine atoms as a photocatalyst explored this idea of 
dual-purpose photocatalysis. They achieved full mineralization of organic molecules 
and found anoxic 4-chlorophenol degradation, which was accompanied by H2 gener-
ation. Since a suitable photocatalyst characteristic is needed for each operation, con-
ducting two or more types of applications over a single photocatalyst at once is the 
main problem. As a result, the best approach is to build and employ a unique pho-
tocatalyst in at least two distinct concurrent applications. For instance, two-dimen-
sional (2D) semiconductors such as graphene oxide (GO), reduced graphene oxide 
(rGO), and MXenes and their hybrid combinations can be used to concurrently gen-
erate H2 and degrade pollutants. Zinc porphyrin metal–organic frameworks nonco-
valently attached to graphene oxide (SURMOF/GO) were created by Nugmanova 
et  al. [278] in Pickering emulsions, and their photocatalytic activity during the 
photodegradation of Rhodamine 6G and 1,5-dihydroxynaphthalene was examined. 
Using methyl viologen as a sacrificial electron acceptor, Nikoloudakis et al. [279] 
created a covalently connected nickel(II) porphyrin–ruthenium(II) tris(bipyridyl) 
dyad for a photocatalytic water oxidation process in dimethylformamide (DMF).

8 � AI‑Assisted Photocatalyst Design

The discovery of electrocatalysts [269] and photocatalysts [280] has been revolution-
ized recently by the development of artificial intelligence (AI) and machine learning 
(ML) approaches. The term “machine learning” is frequently used to describe pro-
cesses in which a simulation of the relationship between specified reference or input 
qualities and the parameters of the output to be predicted from the input is “learned” 
using a suitable training dataset. A large dataset of 10,560 data points from 584 
experiments described in 180 scholarly papers about photoelectrochemical water 
splitting over n-type semiconductors was analyzed by Oral et al. [281] using such 
machine learning techniques. To establish a relationship between the photocurrent 
density and 33 descriptors, including the type of electrode, preparation techniques, 
light irradiation condition, and electrolyte solution, the researchers used a predic-
tive model created by random forest statistics to find patterns in the data. With a 
root-mean-square error of validation and testing of 0.24 and 0.27, respectively, the 
obtained bandgap of the electrode was astonishingly excellent. Generally speaking, 
a more comprehensive training dataset is also needed as an ML model’s complexity 
rises. Such models may infer catalyst activity without doing real trials or simulating 
conditions, since they have been trained. Using predictive ML models instead of 
more traditional experimental or computational approaches might be a cost-effective 
way to determine the photocatalytic activity of a catalyst on the basis of its param-
eters. By using this method, the time and resources needed to ascertain the pho-
tocatalytic activity may be greatly reduced. Additionally, one method for working 
with a small quantity of data is to combine domain expertise with data-driven ML 
model training. Numerous types of photocatalysis domain knowledge are offered 



1 3

Topics in Current Chemistry (2023) 381:31	 Page 37 of 54  31

from the viewpoint of heterogeneous catalysis, leading to the most recent data-
driven machine learning advancements. As a result, the need for tests and simula-
tions decreases through the training of precise prediction models, enabling effective 
photocatalyst screening. The use of ML to provide trustworthy predictions about the 
choice of dopants for PEC systems with exceptional performance seems promising. 
A useful technique for identifying previously obscure links is the examination of 
correlations between numerous dopant characteristics and the photoelectrochemical 
performance of doped photoelectrodes [282]. Wang et  al. [282] successfully built 
an ML model that can predict the effects of 17 metal dopants on hematite (Fe2O3), 
a typical photoelectrode material. A methodology for analyzing the influence of 
dopants for their underlying structural properties, as recorded in database S, is pro-
vided by Wang et al. [282]. A total of 11 descriptors are included in the database 
S, including atomic number (N), ionic radius (ri), atomic radius (ra), single-mole-
cule bond covalent radius (rc), chemical valence (Z), M–O bond formation enthalpy 
based on metal and oxygen, electronegativity (x), and melting temperature of pure 
metal (Tm). Furthermore, utilizing different operational variables as input, scientists 
have employed a variety of ML techniques to forecast pollution removal using pho-
tocatalytic reactions [265].

9 � Conclusions and Future Perspective Directions

Because of the unique features of nanomaterials, nanotechnology offers the ability to 
store solar energy and remove organic contaminants from the environment. Artificial 
photosynthesis systems have a lot of potential. To meet current environmental con-
cerns, green, accessible, and safe techniques for generating such NPs are required. A 
fast reaction process, low temperature, and limited use of chemicals are all important 
elements of green or biosynthetic solutions based on biomass feedstock. We can cre-
ate light-harvesting assemblies, new methods for synthesizing fuels, and instruments 
to synthesize innovative functional materials for solar cells, water-splitting units, pol-
lution control devices, and more by emulating photoactive green nanomaterials found 
in Nature. To create metallic NPs without the use of dangerous chemicals, a practical 
and environmentally friendly approach must be devised. As discussed in this review, 
researchers around the world are already working on new techniques to make metal-
lic NPs. As a result, the more environmentally friendly production of metallic NPs is 
gaining a competitive advantage over alternative synthesis methods. This review also 
covers the use of ecologically friendly synthesis of metallic NPs that also serve as pho-
tocatalysts, using a variety of species such as plants, bacteria, fungi, and algae. Even if 
there has been a lot of progress, the following problems still need to be solved in the 
future: (1) there is a chance to create new photocatalytic materials with increased effec-
tiveness, selectivity, and reusability by the synthesis of novel materials or modification 
of existing materials; (2) one novel method for enhancing the photocatalytic perfor-
mance of semiconductors in a variety of applications is to optimize the semiconductor 
structure for the creation of flexible and more stable photocatalysts with self-cleaning 
and flame-resistance qualities; (3) from the economical point of view, it is promising 
to create photocatalytic systems that are active in the presence of natural sunlight, to 
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significantly increase the photocatalyst lifespan; (4) enhancing photocatalytic reactions 
by using different types of external field, such as magnetic, electric, and piezoelectric 
fields, might result in the creation of more effective photocatalysts by improving light 
absorption, charge separation, and surface reactions; (5) to create more efficient pho-
tocatalytic systems for the generation of clean energy and environmental remediation, 
enhanced characterization investigations might also be carried out to get a better knowl-
edge of the kinetics and processes of the photocatalytic reactions. Designing single-
atom catalysts to achieve high catalytic activity and selectivity while lowering practical 
costs is another important future idea that has gained a lot of media interest lately. The 
major factor increasing the atomic efficiency of metals in these systems is the isolation 
of scattered atoms or coordination atoms with surface atoms on a suitable substrate. 
Last but not least, operando characterization, or simultaneous online examination of 
photocatalyst performance using in situ imaging techniques such as scanning tunneling 
microscopy while functioning under actual conditions, aids in gaining a thorough 
knowledge of the photocatalytic reaction. Future research directions for a photocata-
lytic process are shown in Fig. 16. As a result, more study is needed to improve present 
processes and methodologies, which will help the research community and the general 
public in the future while also posing problems.
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Fig. 16   A schematic illustration of future research direction regarding photocatalytic processes [265]
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